Hey friends, welcome to the Kohiki ALL ABOUT ELECTRONICS. So, in this article, we are going to talk about the basics of the operational amplifier.
Operational Amplifier in the upcoming articles, we will talk more about this operational amplifier. And we will see, how we can design the different circuits using this operational amplifier. So, as its name suggests, this opamp is basically an amplifier. And the basic job of an amplifier is to amplify the input signal. Now, let’s understand why it is known as the operational amplifier.
Operational Amplifier
What is an Operational Amplifier
Operational amplifier So, in the early days when digital computers were not evolved, at that time the different mathematical functions like addition, subtraction, integration, and differentiation were performed using this operational amplifier.
So, just by connecting a few resistors and capacitors, it is possible to perform different mathematical operations. And that is why this amplifier is known as the operational amplifier.
Circuit Symbol of OpAmp and OpAmp in the openloop configuration
So, now if you see this circuit symbol of the operational amplifier, it can be represented by this symbol. So, it consists of two inputs and one output.
Operational Amplifier most of the operational amplifiers consist of two power supplies. The positive and negative power supply. But there are many opamp IC’s which run on a single power supply.
So, now in this operational amplifier, the input terminal which is marked by this positive sign is known as the noninverting input terminal and another input terminal that is marked by this negative sign is known as the inverting input terminal. And it will get cleared to you very shortly why it is known as the noninverting as well as the inverting input terminals.
So, now if you see this operational amplifier, it is one kind of differential amplifier with a single output. It means that this amplifier amplifies the difference between the two input signals. So, let’s say V1 and V2 are the input signals which are being applied to this operational amplifier, and let’s say the gain of this operational amplifier is A, then the output will be equal to A times the V1 minus V2.
single input
So, let’s say if we have applied the single input to this operational amplifier and we have grounded another input terminal then the output you will get A times V1. Where A is the openloop gain of this operational amplifier.
The reason it is being known as the openloop gain is that it is the gain of the operational amplifier when there is no feedback from the output to the input side. So, suppose if you are applying the sinusoidal signal over here, then at the output, that sinusoidal signal should be get multiplied by the factor of this gain, and at the output, you should get the amplified sinusoidal signal.
phase
Now, here the phase of this output voltage will be the same as the input voltage. Likewise, whenever we are applying an input to this negative terminal, and we are grounding another terminal then the output of this amplifier will be equal to minus A times the V2 because the difference between these two input terminals will be equal to 0 minus V2, that is equal to minus V2.
 So, suppose let’s say if we are applying the sinusoidal signal at the input then at the output we will get the amplified sinusoidal signal which is having a 180degree phase with respect to the input signal.
 That means the output will be get inverted by 180 degrees.
 That is why this input terminal is known as the inverting terminal.
 Because the output will be get inverted with respect to the input.
Differential input signal.
So, now here suppose if we apply the input signal between these two positive and the negative terminals then at the output we will get A times this differential input signal. Where here this A represents the openloop gain of this operational amplifier. Now, this operational amplifier is a very high gain amplifier.
 The value of gain used to be in the range of 10 to the power 5, to the 10 to the power 6.
 So, let’s say, even if we apply the 1 mV of a signal between these two terminals, and let’s say if the gain of this opamp is 10to the power 5, then at the output theoretically we should get 1 mV signal that is multiplied by the 10 to the power 5. That is equal to 100V.
 Or let’s say if we apply 1V of a signal, then theoretically, we should get the output as 10 to the power 5 volts. But that is not possible. And the output of this opamp is restricted by the biasing voltages that are being applied to this opamp.
 So, the output voltage will be between these biasing voltages.
Voltage Transfer Curve of opamp
So, if you see the voltage transfer curve of opamp then it will look like this. So, here this Xaxis represents the differential input that is applied to this operational amplifier. and the Yaxis represents the output voltage of the amplifier. And here the slope basically represents the gain of the amplifier, which used to be in the range of 10 to the power 5 to the 10 to the power 6.
Now, here let’s say if the gain of the opamp is 10 to the power 6. And let’s say we are applying 1 microvolt of a signal. Then at the output, we should get 1V off a signal. Likewise, let’s say if we apply 10 microvolts of a signal, then at the output, we will get 10 V of output. But as we increase this input signal, then we will find that after some value of input signal, the output will get saturated to the value +Vsat, which used to be less than the positive biasing supply.
So, in this way, as soon as the input voltage goes beyond some certain value, the output will be get saturated to the plus saturation voltage. And the same is true for the negative input voltages. So, as soon as the input voltage goes beyond some threshold value at the output you will get minus saturation voltage.
So, whenever this operational amplifier is used in an openloop configuration that means there is no feedback from the output to the input side, at that time even if we apply a small input signal between these two input terminals, then also you will find that the output will be get saturated towards the positive or the negative biasing voltages. So, this particular characteristic of the opamp is particularly useful when we use this opamp as a comparator.
Applications
 designing the active filters
 oscillators
 waveform converters
 analog to digital and digital to analog converters
So, this is one of the applications in which this opamp can be used. But if you see this opamp, this opamp can also be used in so many other applications. Like, in designing the active filters, oscillators, waveform converters, and analog to digital and digital to analog converters.
if we count the list, then the list will go on. So, basically, this opamp is a very versatile IC and you will find this opamp in so many applications. Now, the reason this opamp is used in so many applications is because of its different characteristics.
So, let’s see the different characteristics of the opamp because of which it is so versatile and it is being used in different applications. So, before we see that let’s see the equivalent circuit of the opamp.
So, as you can see here, this Ri is the input impedance of this opamp. Likewise, this Ro represents the output impedance of this opamp. And the output voltage of the opamp will be the openloop gain multiplied by the difference between the input signals V1 and V2.
Equivalent Circuit of the Opamp
So, now before we see the different characteristics of the opamp, let’s see the different characteristics of the ideal opamp. So the ideal opamp should have this input impedance Ri that is equal to infinity. So, that whatever input is being applied between the input terminals will directly get applied to the opamp. Similarly, the output impedance of this opamp should be equal to zero.
That means whenever we are applying the output load to this opamp then the output voltage should directly come across this output load. Then if you see the bandwidth of the ideal opamp, the bandwidth of the ideal opamp should also be equal to infinity. It means it should support all the frequencies starting from the zero Hertz to the infinite.
Similarly, the gain of the ideal opamp should also be equal to infinite.
Apart from that whenever these two input terminals are zero
That means the input to this opamp is zero
At that time the output of this ideal opamp should be equal to zero.
Now, apart from these characteristics, there are a few more characteristics of the ideal opamp that is slew rate and the commonmode rejection ratio.
So, will see more about these different characteristics in detail in separate articles. But let’s see the basics of these different characteristics. So, in a simple way, if I say, the slew rate is basically how fast the opamp is able to reach its final value. In that is particularly useful when we are applying a square wave to the opamp. So, let’s say we have applied the square wave to the input of this opamp and at the output, we are getting this output waveform. That is varying from zero volts to the V saturation voltage.
Ideal Opamp characteristics
Ideal Opamp characteristics So, the ideal opamp should be able to reach from the zero volts to the Vsat volt in zero time. So for the ideal opamp, the slew rate should be equal to infinity. Generally, this slew rate is defined in the unit of Volt per microsecond. That means how fast the opamp is able to respond to the output voltage. Then there is another parameter, which is known as the commonmode rejection ratio.
So, let’s understand very briefly what do we mean by this commonmode rejection ratio. We will talk more about it in a separate article. So, let’s say if we are applying the same input voltage to this V1 and V2 then the difference between these two voltages will be equal to zero, and at the output, we should get zero volts.
Likewise, when we are applying different input voltages V1 and V2 to this opamp then at the output the difference between these two voltages will be get amplified by a certain amplifier gain.
So, this commonmode rejection ratio basically defines how well the opamp is able to reject the common input voltages that are being applied to both its input terminals and how well it is able to amplify the difference between the two voltages.
It is generally defined as the ratio of differential gain divide by the commonmode gain.
So, for the ideal opamp, the value of this commonmode rejection ratio should be equal to infinity.
So, here is the list of different ideal opamp characteristics.
So the ideal opamp has infinite input impedance, zero output impedance, infinite openloop gain, and infinite bandwidth and slew rate.
In this ideal opamp, whenever the input is equal to zero then at that time the output is also zero.
And this ideal opamp has an infinite commonmode rejection ratio.
But if you see any practical opamps, they used to have finite input as well as output impedance.
Generally, this input impedance is in the range of megaohms, while the output impedance is in the range of few ohms.
Similarly, the openloop gain of the opamp is not infinity but it used to be in the range of 10 to the power 5 to the 10 to the power6. Likewise, for the practical opamps, when the input is equal to zero, at that time also you will get some output at the opamp. Generally, it used to be in the range of a few mV. That is known as the offset voltage. And we will talk more about it in a separate article.
Characteristics of different parameters of General Purpose OpAmp
So, here is the list of different parameters and the values of different parameters for the general purpose 741 opamp IC. So, now if you see the different opamp ICs, they are optimized for the different parameters.
So, let’s say if one opamp is optimized for the very high slew rate, while another opamp is optimized for the very high openloop gain. And if you see some other IC, you might find that it is optimized for very low offset voltages.
So, depending upon your application you need to decide which parameter is critical for your application, and based on that you can decide which opamp is suitable for your particular application.
Now, so far we have seen this opamp in an openloop configuration. That means, there was no feedback from output to the input. Now, in the next article, we will see what happens when we provide feedback from the output on the input side.
FAQ

What are the operational amplifier and its types?
Operational electronic equipment (opamp) is an Associate in Nursing analog circuit block that takes a differential voltage input and produces a singleended voltage output. Opamps typically have 3 terminals: 2 highimpedance inputs and a lowimpedance output port.

Why is it called an operational amplifier?
Opamp stands for operational electronic equipment. it’s accessible in IC (Integrated Circuit) chip. … Originally, opamps were thus named as a result of they were wont to model the fundamental mathematical operations of addition, subtraction, integration, differentiation, etc. in electronic analog computers.

What is the difference between the amplifier and an operational amplifier?
Perhaps the foremost notable distinction between Associate in Nursing INA Associate in Nursingd an opamp in terms of usage is that the lack of a circuit. … Associate in Nursing op amp designed for gain (either inverting or noninverting) can amplify the signal by the set closedloop gain, however, the commonmode signal can stay at the output.

What are an opamp and its application?
Opamps area unit employed in a good type of applications in natural philosophy. a number of the additional common applications are: as a voltage follower, selective inversion circuit, a currenttovoltage converter, active rectifier, integrator, an entire big variety of filters, and a voltage comparator.

What are the advantages of the operational amplifier?
Advantages: inflated circuit stability, ▪ inflated input electric resistance, ▪ attenuated output electric resistance, inflated frequency information measure at a constant gain.

How does an operational amplifier work?
Operational electronic equipment, or opamp, typically contains a differentialinput stage with high input resistivity, Associate in Nursing intermediategain stage, and a pushpull output stage with a coffee output resistivity (no bigger than one hundred Ω) (Fig. 1). … That is, the output gets fed back to the inverting input through some resistivity.

What is the main function of the operational amplifier?
Operational electronic equipment is AN microcircuit that may amplify weak electrical signals. Operational electronic equipment has 2 input pins and one output pin. Its basic role is to amplify and output the voltage distinction between the 2 input pins.

Why is IC 741 called so?
The 741 OpAmp IC could be a monolithic computer circuit, comprising of generalpurpose Operational electronic equipment. it absolutely was 1st factorymade by Fairchild semiconductors within the year 1963. the quantity seven41 indicates that this operational electronic equipment IC has 7 purposeful pins, four pins capable of taking input, and one output pin

What is the symbol of an opamp?
The image for Associate in Nursing operational electronic equipment could be a triangle that has 2 inputs and one output. This image is shown below in figure two. The input with a positive sign is named the noninverting terminal and also the input with the negative sign is named the inverting terminal

Where are operational amplifiers used?
741 Operational Amplifiers (also called Op Amps) square measure employed in a variety of circuits. they’re usually accustomed amplify weak electrical current in an exceeding circuit. Radios, stereo systems, headphones, TVs severaland lots ofand plenty of} alternative electrical products embrace AN operational electronic equipment as a part in many of their circuits.
You Tube Video
If You Can’t Understand My Article Then Watch Video On YouTube Which Published By Electronics Notes OnTopic What is an OpAmp  Operational Amplifier Basics
So, I hope in this article you understand the different characteristics of this opamp.
So, if you have any questions or suggestions do let me know in the comment section below. If you like this article hit the like button and subscribe to the kohiki for more such articles.
Continue Reading…